3.179 \(\int x^8 \sqrt{a+b x^3} (A+B x^3) \, dx\)

Optimal. Leaf size=103 \[ \frac{2 a^2 \left (a+b x^3\right )^{3/2} (A b-a B)}{9 b^4}+\frac{2 \left (a+b x^3\right )^{7/2} (A b-3 a B)}{21 b^4}-\frac{2 a \left (a+b x^3\right )^{5/2} (2 A b-3 a B)}{15 b^4}+\frac{2 B \left (a+b x^3\right )^{9/2}}{27 b^4} \]

[Out]

(2*a^2*(A*b - a*B)*(a + b*x^3)^(3/2))/(9*b^4) - (2*a*(2*A*b - 3*a*B)*(a + b*x^3)^(5/2))/(15*b^4) + (2*(A*b - 3
*a*B)*(a + b*x^3)^(7/2))/(21*b^4) + (2*B*(a + b*x^3)^(9/2))/(27*b^4)

________________________________________________________________________________________

Rubi [A]  time = 0.08424, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {446, 77} \[ \frac{2 a^2 \left (a+b x^3\right )^{3/2} (A b-a B)}{9 b^4}+\frac{2 \left (a+b x^3\right )^{7/2} (A b-3 a B)}{21 b^4}-\frac{2 a \left (a+b x^3\right )^{5/2} (2 A b-3 a B)}{15 b^4}+\frac{2 B \left (a+b x^3\right )^{9/2}}{27 b^4} \]

Antiderivative was successfully verified.

[In]

Int[x^8*Sqrt[a + b*x^3]*(A + B*x^3),x]

[Out]

(2*a^2*(A*b - a*B)*(a + b*x^3)^(3/2))/(9*b^4) - (2*a*(2*A*b - 3*a*B)*(a + b*x^3)^(5/2))/(15*b^4) + (2*(A*b - 3
*a*B)*(a + b*x^3)^(7/2))/(21*b^4) + (2*B*(a + b*x^3)^(9/2))/(27*b^4)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int x^8 \sqrt{a+b x^3} \left (A+B x^3\right ) \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int x^2 \sqrt{a+b x} (A+B x) \, dx,x,x^3\right )\\ &=\frac{1}{3} \operatorname{Subst}\left (\int \left (-\frac{a^2 (-A b+a B) \sqrt{a+b x}}{b^3}+\frac{a (-2 A b+3 a B) (a+b x)^{3/2}}{b^3}+\frac{(A b-3 a B) (a+b x)^{5/2}}{b^3}+\frac{B (a+b x)^{7/2}}{b^3}\right ) \, dx,x,x^3\right )\\ &=\frac{2 a^2 (A b-a B) \left (a+b x^3\right )^{3/2}}{9 b^4}-\frac{2 a (2 A b-3 a B) \left (a+b x^3\right )^{5/2}}{15 b^4}+\frac{2 (A b-3 a B) \left (a+b x^3\right )^{7/2}}{21 b^4}+\frac{2 B \left (a+b x^3\right )^{9/2}}{27 b^4}\\ \end{align*}

Mathematica [A]  time = 0.0554779, size = 75, normalized size = 0.73 \[ \frac{2 \left (a+b x^3\right )^{3/2} \left (24 a^2 b \left (A+B x^3\right )-16 a^3 B-6 a b^2 x^3 \left (6 A+5 B x^3\right )+5 b^3 x^6 \left (9 A+7 B x^3\right )\right )}{945 b^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8*Sqrt[a + b*x^3]*(A + B*x^3),x]

[Out]

(2*(a + b*x^3)^(3/2)*(-16*a^3*B + 24*a^2*b*(A + B*x^3) - 6*a*b^2*x^3*(6*A + 5*B*x^3) + 5*b^3*x^6*(9*A + 7*B*x^
3)))/(945*b^4)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 77, normalized size = 0.8 \begin{align*}{\frac{70\,B{x}^{9}{b}^{3}+90\,A{b}^{3}{x}^{6}-60\,Ba{b}^{2}{x}^{6}-72\,Aa{b}^{2}{x}^{3}+48\,B{a}^{2}b{x}^{3}+48\,A{a}^{2}b-32\,B{a}^{3}}{945\,{b}^{4}} \left ( b{x}^{3}+a \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8*(B*x^3+A)*(b*x^3+a)^(1/2),x)

[Out]

2/945*(b*x^3+a)^(3/2)*(35*B*b^3*x^9+45*A*b^3*x^6-30*B*a*b^2*x^6-36*A*a*b^2*x^3+24*B*a^2*b*x^3+24*A*a^2*b-16*B*
a^3)/b^4

________________________________________________________________________________________

Maxima [A]  time = 0.928928, size = 159, normalized size = 1.54 \begin{align*} \frac{2}{945} \, B{\left (\frac{35 \,{\left (b x^{3} + a\right )}^{\frac{9}{2}}}{b^{4}} - \frac{135 \,{\left (b x^{3} + a\right )}^{\frac{7}{2}} a}{b^{4}} + \frac{189 \,{\left (b x^{3} + a\right )}^{\frac{5}{2}} a^{2}}{b^{4}} - \frac{105 \,{\left (b x^{3} + a\right )}^{\frac{3}{2}} a^{3}}{b^{4}}\right )} + \frac{2}{315} \, A{\left (\frac{15 \,{\left (b x^{3} + a\right )}^{\frac{7}{2}}}{b^{3}} - \frac{42 \,{\left (b x^{3} + a\right )}^{\frac{5}{2}} a}{b^{3}} + \frac{35 \,{\left (b x^{3} + a\right )}^{\frac{3}{2}} a^{2}}{b^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

2/945*B*(35*(b*x^3 + a)^(9/2)/b^4 - 135*(b*x^3 + a)^(7/2)*a/b^4 + 189*(b*x^3 + a)^(5/2)*a^2/b^4 - 105*(b*x^3 +
 a)^(3/2)*a^3/b^4) + 2/315*A*(15*(b*x^3 + a)^(7/2)/b^3 - 42*(b*x^3 + a)^(5/2)*a/b^3 + 35*(b*x^3 + a)^(3/2)*a^2
/b^3)

________________________________________________________________________________________

Fricas [A]  time = 1.71534, size = 220, normalized size = 2.14 \begin{align*} \frac{2 \,{\left (35 \, B b^{4} x^{12} + 5 \,{\left (B a b^{3} + 9 \, A b^{4}\right )} x^{9} - 3 \,{\left (2 \, B a^{2} b^{2} - 3 \, A a b^{3}\right )} x^{6} - 16 \, B a^{4} + 24 \, A a^{3} b + 4 \,{\left (2 \, B a^{3} b - 3 \, A a^{2} b^{2}\right )} x^{3}\right )} \sqrt{b x^{3} + a}}{945 \, b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

2/945*(35*B*b^4*x^12 + 5*(B*a*b^3 + 9*A*b^4)*x^9 - 3*(2*B*a^2*b^2 - 3*A*a*b^3)*x^6 - 16*B*a^4 + 24*A*a^3*b + 4
*(2*B*a^3*b - 3*A*a^2*b^2)*x^3)*sqrt(b*x^3 + a)/b^4

________________________________________________________________________________________

Sympy [A]  time = 3.67128, size = 219, normalized size = 2.13 \begin{align*} \begin{cases} \frac{16 A a^{3} \sqrt{a + b x^{3}}}{315 b^{3}} - \frac{8 A a^{2} x^{3} \sqrt{a + b x^{3}}}{315 b^{2}} + \frac{2 A a x^{6} \sqrt{a + b x^{3}}}{105 b} + \frac{2 A x^{9} \sqrt{a + b x^{3}}}{21} - \frac{32 B a^{4} \sqrt{a + b x^{3}}}{945 b^{4}} + \frac{16 B a^{3} x^{3} \sqrt{a + b x^{3}}}{945 b^{3}} - \frac{4 B a^{2} x^{6} \sqrt{a + b x^{3}}}{315 b^{2}} + \frac{2 B a x^{9} \sqrt{a + b x^{3}}}{189 b} + \frac{2 B x^{12} \sqrt{a + b x^{3}}}{27} & \text{for}\: b \neq 0 \\\sqrt{a} \left (\frac{A x^{9}}{9} + \frac{B x^{12}}{12}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8*(B*x**3+A)*(b*x**3+a)**(1/2),x)

[Out]

Piecewise((16*A*a**3*sqrt(a + b*x**3)/(315*b**3) - 8*A*a**2*x**3*sqrt(a + b*x**3)/(315*b**2) + 2*A*a*x**6*sqrt
(a + b*x**3)/(105*b) + 2*A*x**9*sqrt(a + b*x**3)/21 - 32*B*a**4*sqrt(a + b*x**3)/(945*b**4) + 16*B*a**3*x**3*s
qrt(a + b*x**3)/(945*b**3) - 4*B*a**2*x**6*sqrt(a + b*x**3)/(315*b**2) + 2*B*a*x**9*sqrt(a + b*x**3)/(189*b) +
 2*B*x**12*sqrt(a + b*x**3)/27, Ne(b, 0)), (sqrt(a)*(A*x**9/9 + B*x**12/12), True))

________________________________________________________________________________________

Giac [A]  time = 1.11406, size = 144, normalized size = 1.4 \begin{align*} \frac{2 \,{\left (\frac{3 \,{\left (15 \,{\left (b x^{3} + a\right )}^{\frac{7}{2}} - 42 \,{\left (b x^{3} + a\right )}^{\frac{5}{2}} a + 35 \,{\left (b x^{3} + a\right )}^{\frac{3}{2}} a^{2}\right )} A}{b^{2}} + \frac{{\left (35 \,{\left (b x^{3} + a\right )}^{\frac{9}{2}} - 135 \,{\left (b x^{3} + a\right )}^{\frac{7}{2}} a + 189 \,{\left (b x^{3} + a\right )}^{\frac{5}{2}} a^{2} - 105 \,{\left (b x^{3} + a\right )}^{\frac{3}{2}} a^{3}\right )} B}{b^{3}}\right )}}{945 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

2/945*(3*(15*(b*x^3 + a)^(7/2) - 42*(b*x^3 + a)^(5/2)*a + 35*(b*x^3 + a)^(3/2)*a^2)*A/b^2 + (35*(b*x^3 + a)^(9
/2) - 135*(b*x^3 + a)^(7/2)*a + 189*(b*x^3 + a)^(5/2)*a^2 - 105*(b*x^3 + a)^(3/2)*a^3)*B/b^3)/b